- Baumann, Karl
- SUBJECT AREA: Steam and internal combustion engines[br]b. 18 April 1884 Switzerlandd. 14 July 1971 Ilkley, Yorkshire[br]Swiss/British mechanical engineer, designer and developer of steam and gas turbine plant.[br]After leaving school in 1902, he went to the Ecole Polytechnique, Zurich, leaving in 1906 with an engineering diploma. He then spent a year with Professor A.Stodola, working on steam engines, turbines and internal combustion engines. He also conducted research in the strength of materials. After this, he spent two years as Research and Design Engineer at the Nuremberg works of Maschinenfabrik Augsburg-Nürnberg. He came to England in 1909 to join the British Westinghouse Co. Ltd in Manchester, and by 1912 was Chief Engineer of the Engine Department of that firm. The firm later became the Metropolitan-Vickers Electrical Co. Ltd (MV), and Baumann rose from Chief Mechanical Engineer through to, by 1929, Special Director and Member of the Executive Management Board; he remained a director until his retirement in 1949.For much of his career, Baumann was in the forefront of power station steam-cycle development, pioneering increased turbine entry pressures and temperatures, in 1916 introducing multi-stage regenerative feed-water heating and the Baumann turbine multi-exhaust. His 105 MW set for Battersea "A" station (1933) was for many years the largest single-axis unit in Europe. From 1938 on, he and his team were responsible for the first axial-flow aircraft propulsion gas turbines to fly in England, and jet engines in the 1990s owe much to the "Beryl" and "Sapphire" engines produced by MV. In particular, the design of the compressor for the Sapphire engine later became the basis for Rolls-Royce units, after an exchange of information between that company and Armstrong-Siddeley, who had previously taken over the aircraft engine work of MV.Further, the Beryl engine formed the basis of "Gatric", the first marine gas turbine propulsion engine.Baumann was elected to full membership for the Institution of Mechanical Engineers in 1929 and a year later was awarded the Thomas Hawksley Gold Medal by that body, followed by their James Clayton Prize in 1948: in the same year he became the thirty-fifth Thomas Hawksley lecturer. Many of his ideas and introductions have stood the test of time, being based on his deep and wide understanding of fundamentals.JB
Biographical history of technology. - Taylor & Francis e-Librar. Lance Day and Ian McNeil. 2005.